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The technique of lattice Boltzmann simulation has been applied to the study of two-dimensional particle
suspensions through a modeled arterial stenosis. The stenosis model consists of two-side symmetric semicir-
culars in a planar channel with the width of the stenosis throat largerdizendl less than @, whered is the
diameter of the particles. When only one patrticle is positioned off-centerline initially, the particle migrates
off-centerline after passing the stenosis and the velocity at the stenosis throat is much larger than that in a flat
tube. Only when two particles are positioned symmetrically to the centerline to a very high accuracy can the
flow be blocked by two particles completely. A very small asymmetry will be amplified proximal to the
stenosis throat in that one of the particles goes back to leave space to let the other particle passing the stenosis
first so that the particles cannot be blocked. An evidence of attractive interactions between the particles as well
as a particle and a proximal protuberance is observed when the asymmetry is very small and the width at the
stenosis throat is between two critical values. The hematocrit distribution of the particles is studied by simu-
lating multiparticle suspensions. It is found that the width of the stenosis throat has a significant influence on
the hematocrit distribution of the particles in the flat tubes far from the stenosis.
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I. INTRODUCTION uid flow and the Newtonian dynamics for the particle mov-
ing through the solid-liquid interface. Ferg al.[9] used the
The flow and particle suspensions through stenosis vednfinite-element method to investigate the motion of a circu-
sels are of great interest in medical sciefice6]. Narrowing  lar particle in a Couette and Poiseduille flow. Miglioriei al.
of blood flow, or stenosis, may cause a severe reduction ihl0] used a lattice Boltzmann approach to quantify the forces
blood flow and red blood cell transportation. This reductionexerted on rolling leukocytes by red blood cells in “virtual
poses grave health risks and is a major cause of mortality arffood vessels.” Feng and Weinbaujml] presented an axi-
morbidity in the industrialized world. There are numerousSYmmetric model in which they treated the red blood cell
papers on the study of the pulsatile flow in a mildly or se.surface as rigid but co_n5|dered explicitly the b_ulld up in hy-
verely stenotic artery. For example, Mittat al. applied a drodynamic pressure in the glycocalyx associated with dy-

large-eddy simulation to study pulsatile flow in a modeled?uarg:'c ;%Tn‘)ertzislgncﬁ;ggtéﬁ;ir'tE:Z"\"/Lr[;] ;iidm?aesrtrcl:fc_re q
stenosig 3]. The inclusion of particle suspensions in stenotic P 9

: . . . I lIs in an regate t ribe the hematocrit distri-
arteries adds complexity for theoretical and expenmenta{E ood cells in an aggregate to describe the hematocrit dis

| The fluid d . £ the f dth . ution while avoiding to simulate the moving of each red
analyses. 1he fiuid dynamics ot the Tlow an € moving Ol 04 cell. This paper will concentrate on the particles

the particles are inextricably intertwined and both need to b‘?’noving through small stenosis tubes. We will use the lattice
understood. On the other hand, the solid-liquid suspensiongqit;mann method12—14.

in flat pipe flow havg attragted much attention, both exper_i- The lattice Boltzmann method has been proved to be one
mentally and numerically, in the past few decades. Early inyf the most promising tools in the simulation of the solid-
1961, Segreand Silberberg discovered experimentally thatfyid two-phase flow. Based on the discrete Boltzmann equa-
neutrally buoyant cylinders migrated laterally away bothtion [15] and inheriting the advantage of local nature of the
from the wall and the centerline and reached a certain laterglomputation, the lattice Boltzmann method has been proved
equilibrium position in pipe flo7]. Fahraeus found that the to achieve second-order accuracy in the domain of the fluid,
hematocrit, the ratio of red blood cells to the total volume ofboth theoretically and numericalpi6]. Ladd[17] was the
a blood sample, in the small tube was smaller than that in thérst to apply the lattice Boltzmann method to analyze a solid
vessel[8]. Numerical simulations on particle suspensions inparticle in a fluid. He proposed a modified bounce-back rule
fluid flow are quite difficult and intensive due to the com- and a scheme to evaluate the hydrodynamic force exerted on
plexity of incorporating the hydrodynamic dynamics for lig- the solid particles. Aidunet al. [18] attempted to improve
Ladd’s model by removing the fluid within the solid region
so that they could handle a solid with density less than that
* Author to whom correspondence should be addressed. Email adf the fluid. Qi[19] applied the model to simulate the ellipse
dress: hpfang2000@yahoo.com in nonzero Reynolds number flow. Behref@D] analyzed
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the different boundary conditions based on the bounce-back I I I
rule and proposed a related bounce-back at the nodes.
Raiskinmaket al. [21] applied the method to simulate non-
spherical particles suspended in a shear flow. Both Ladd’s
and Aidum’s models assumed a physical boundary located in
the middle of the link between a solid node and a fluid node.
The exact location of the physical boundary for the Behrend’
model is more difficult to determine. Consequently, the hy-
drodynamic radius of a suspended particle differs from the
input radius for those three mod¢&1]. Noble and Torczyn-
ski proposed a lattice Boltzmann model to study the system
with complex and moving geometries in which computa-
tional cells were partially filled with fluid22]. Inamuro
et al. [23] studied the neutrally buoyant circular cylinders
in the flow between parallel walls. The force and torque wereBol
calculated by integrating stress tensor and momentum fluxX
on a closed surface for a fixed radial distance D.X6om
the surface of the cylinder. Recently, Fagigal. [24,25 ap-
plied the lattice Boltzmann method to study the fluid flow in
distensible blood vessels. Hoekstet al. extended the
method to harmonic flows. Within the range of Womersley
numbers tested, the agreement between the simulations and
the theory is good26]. Hirabayashiet al. have performed IIl. THE LATTICE BOLTZMANN MODEL
lattice Boltzmann simulations for blood flow in a vessel de- 11,4 Boltzmann equation with the single relaxation time
formed by the presence of an aneury]. approximation read32]

Recently, we proposed a new lattice Boltzmann method to
simulate two-dimensional moving particles in a Newtonian of 1
fluid [28]. Briefly, the boundary condition proposed by Fil- —+ ¢ Vi=— —[f—fEd], 1)
ippova and Han€f29,3( for the stationary complex geom- ot A
etry was incorporated with the Newtonian dynamics. The

. - . (eq) . g . . _
accuracy and robustness of this technique have been demo‘ﬁber.eg IS the_ particle v_eIocnyf IS the _equmbrlum dis
tribution function, and\ is the relaxation time.

strated by simulating sedimentation of a circular cylinder in a Discretizing Eq.(1) in the velocity space by using a
two-dimensional channel and comparing the simulation re-, g =a. y spacg by 9

sults with those obtained from a second-order finite-elementﬂnlte set of velocitiess , we obtain[33,34

method[28]. The method was successfully applied to study of 1

the sedimentation of a single charged circular cylinder in a —+g-Vf=— —[f;— £ 2
two-dimensional channel in a Newtonian flJigl]. In this ot A

paper, we will extend the method to simulate two- . ) )
dimensional particle suspensions in symmetric stenotic artef? the model on a square lattice in two dimensioes,
ies. The simulation shows that the stenosis not only increases (0.0), & = (cos(i—1)/2,sinm(i—1)/2), i=1,2,3,4, ands

the velocities of fluid and particles at the stenosis throat, but (€0Sm(2i—1)/4,sinm(2i—1)/4), for i=5,6,7,8 are the nine
the particles may be blocked temporally when the width ofP0ssible velocity vectors as shown in Fig. 1, and the equilib-
the stenosis throat is smaller than two times the diameter dium distribution functions are of the forf§83]
the particles. However, for rigid particles, only when the par- 2 0 2
ticles are positioned symmetrically to a very high accuracy e

can the symmetric stenosis be blocked completely. A little fri=aip| 1+ 28 ut g(q,u)z_ Euz )
asymmetry will be amplified proximal to the stenosis throat

in that one of the particles will go back to leave space 1o lefor athermal fluids. In the equatiomo=4/9, ay=a,= as
the other particle pass the Fhroat, implying Fhat the stenosis. a,=1/9, and as= ag= a;=ag=1/36, c=x/dt is the
throat cannot block the particles completed in a real systemgttice speed, andx and 8t are the lattice constant and the

Unexpected attractive interactions between the particles gsye step, respectively. The densjiyand the velocityu are
well as a particle and a proximal protuberance are observegefined by

when the asymmetry is very small and the width at the steno-
sis throat is between two critical values. The hematocrit dis-
tribution of the particles is studied by simulating multipar- pIE fi,
ticle suspensions.

The paper is organized as follows. In Sec. Il we briefly
describe the lattice Boltzmann method. Section Il is devoted UZE f.elp. (4)
to a brief review of the boundary condition and hydrody- i

FIG. 1. Basic cell for the two-dimensional “nine-speed” lattice
tzmann model.

namics force exerted on the moving particles we used in
the present paper. In Sec. IV, we present our simulation re-
sults. And finally, conclusion and discussion are presented
in Sec. V.
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However, the distribution functioffi(x,,t) at the boundary

| | ' ' nodeb is unknown.

—ﬁ@._ -=—+t-=-- Ophy-sic; O=- Fillipova and Hanel assumed the linear interpolafi2f]
b,  louia ! boundary |
I node 1oy fi% )= (1= ) fi (¢ O+ x T 1) + 616 U, (9)
| A
I Y fbp‘ _ = whereu,,= u(x,, ,t) is the velocity ak,, andy is a parameter.
sx |1 AdX| o f(*) is a fictitious equilibrium distribution function given by
I e TS 1) (% 0) = ip[ 1+ 36 - Ung + 3(8- )2~ 307, (10
bound . . . .
I I |ng:: Wy where u;=u(x;,t) is the fluid velocity at the fluid nodé
| | shown in Fig. 2u; is to be determined. Fillipova and Hanel
_____1__ # _ ¢_ . proposed 29]
| |
| I I I Upi=(A—21)us/A+u,/A and y=(2A—-1)/7
FIG. 2. Layout of the regularly spaced lattices and curved wall for A=} (11
boundary.
and
The lattice Boltzmann equatidii3,14] is obtained by fur- L
ther discretizing Eq(2) in spacex and timet as Uye=Us andx=(2A—-1)/(7—=1) forA=<z, (12

1 to obtain a second-order scheme for the “slow flow.” Mei
fi(x+oxg t+ o) —fi(x,t)=——(fi— 79, (5) etal.[30] improved the stability of the scheme at1 by
T replacing Eq.(12) by

wherer=\/6t. The macroscopic equations can be obtained

_ o Upr=U;  andy=(2A—1)/(r—2) for A<j3. (13
by a Chapman-Enskog procedure. The viscosity in the mac-

roscopic equations Is They have used the improved technique to test against sev-
eral flow problems such as the two-dimensional channel
y= (27-1) c25t 6) flows with constant and oscillating pressure gradients, flows
6 ’ due to an impulsively started wall, lid-driven square cavity
flows, and flows over a column of circular cylinders to dem-
In this paper, we sefx=odt=c=1. onstrate its accuracy and robustngsg.
For eachrelevant direction ¢ from a fluid node to a
[1l. BOUNDARY CONDITION boundary node, the solid boundary obtained an amount of
FOR COMPLEX GEOMETRY momentumf;(x;,t)e — fi(X,,t)& where the first term is

. _ due to a fraction of particles;(x;,t,) colliding on the
Filippova and Hanef29] have presented their scheme for . \nqary and the second term comes from a fraction of par-
treating the boundary condition by considering a curve(fides f-(x,,t) bouncing back from the boundary in a time

bounda_ry I_ying betweer_1 the lattice node O.f spméx_as_ step. Consequently, the hydrodynamic force exerted on the
shown in Fig. 2. The lattice nodes on the solid and fluid sideg)ig particle at timet along this direction is

are denoted by, andx;, respectively. We assume

F(xp) =[fi(xs,t4) +fi(xp,0) ]& (14
&=Xp— Xt
wheret, is the postcollision time, ané(x, ,t) is obtained
and from Eq. (9). The particle forcé~ and torqueT; acting on
the solid particle are obtained as
e=-§.
The filled small circle, marked by a lettev, at x,, is the Fr=2 F(Xy) (19

intersection with the physical boundary on the link between
X, andx; . The fraction of an intersected link in the fluid is gn(g

|Xf_Xw|

A:—le_xb| . 0=A<1. (7) Tr=> (Xg—R)XF(Xy), (16)

In the streaming stef;(X;) is expected to be obtained by where R is the center of mass of the solid particle. The
summation runs over all the relevant directions of the bound-
fi(xs , t+ 6t) = f7(Xp ). (8) ary nodes.
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The translation of the center of mass of each particle is 3 ——7— — ]
updated at each Newtonian dynamics time step by using ¢ 17| d=8.5um -
so-called half-step “leap-frog” schenj&7—-39. The scheme E oo [ ]
is written as = 7L h

-34 [ " 1 " [ n 1 n 1 n A
V(t+38t)=V(t—38t)+ StF(t)/M, (17 436 102 -68 68 102 136

x(um)

= _1 2
R+ S =R(1)+ StV (t=3 ) + SF-()/M, (18 FIG. 3. Schematic diagram of the planar channel with stenosis.

The lengthL and widthw of the channel are 27gm and 68um,

where V' is the velocity of the center of mass of the solid respectivelyd=8.5 um is the diameter of the circular particle sus-

particle, andM is the mass of the solid particle. The rotations pensions. The uppdfower) protuberance is a semicircle, centered

of the particles are_ updated in a_Sim”ar way. . at x=0 on the uppe(lower) boundary with radius determined by
Due to the moving of the particles, some fluid nodes canye width of the stenosis throat

be covered by the moving solid particles, the fluids at these
nodes will be removed from the system. On the other hand, IV. SIMULATION AND RESULTS
when a fluid node previously occupied by a solid particle is
recovered, the fluid density at this newly created node is The system is a two-dimensional rigid planar channel of
assumed to be the average of the extrapolated values fromlength L and widthw as shown in Fig. 3w=8d and L
second-order extrapolation scherogall the possible direc- =32d, whered=8.5 um is the diameter of the circular par-
tions [28,35. In Ref.[25] we have shown that the mass is ticle suspensions, which approximately equals the diameter
conserved approximately at boundaries. of human red blood cells. The stenosis is created by adding
It is clear that both the boundary condition for the com-two symmetric protuberances inside the vessel. The upper
plex geometry and the Newtonian dynamics for the moving(lower) protuberance is a semicircle, centered&at0 on the
particles achieve second-order accuracy. The accuracy of thigopper(lower) boundary with radius determined by the width
lattice Boltzmann scheme has been demonstrated by simulatf the stenosis throdt. In this paperd<b<2d. The densi-
ing the sedimentation of a cylinder circular in a vertical tubeties of both fluid and particles are 1 g/grand the kinematic
and comparing the simulation results with those obtainediscosity of the fluid flow isy=0.01 cnf/s, corresponding
from a second-order finite-element schefi®8]. The method to the water at 20 °C. The pressure difference between the
has been successfully applied to the study of the sedimenténlet and outlet isAp=541 Pa, comparable to that in the
tion of a single charged circular cylinder in a two- arteriole of the cat mesente(yee Table 5.5:2 of Ref6]). A
dimensional channel in a Newtonian flJigl1]. pressure boundary condition, proposed by Zou and 36¢
When there are more than one particle in a tube, the latis applied at the inlet and outlet. Initially the distribution
tice Boltzmann method breaks down when particles ardunctions at all the fluid nodes are set to be the equilibrium
closer than some critical separations. Introduction of a lubridistribution functions with zero velocity except for those at
cation force is one of the solutions to solve this probleminlet or outlet. The particles are positionedl 8eft to the
[40,41]. Lubrication forces are significant only when in close stenosis throat, keeping motionless at their initial positions in
proximity. In this paper, only the normal lubrication forces the first 5000 time steps. From=5000 time steps the par-
between two particle§',\‘,‘b are added. Yuan and Bd1] ticles are free to move according to the hydrodynamic forces
proposed the lubrication forces between two circular parand torques acting on them. In the simulatie®,0.75. The
ticles with same radius as radius of the particles is 7.001 lattice units which is large
enough to obtain accurate resul28]. Consequently, each
w3 R\/ﬁ NN lattice unit corresponds to 8,6m/7.001/2=0.607 um. The
Fno=—5mr5\ g (a—vb), (19 typical velocity of the particlesy,, in the flat tube is about
1.5 cm/s, comparable to the velocity of the red blood cells in
a cat artery with a diameter 56m (see, Fig. 5.3:1 of Ref.

. . _ _ . N N ._
wheresis the fringe-to-fringe gap;, andvy, are the veloci [6]). The particle Reynolds number is defined by ,Re

ties along the normal direction of the two particles, respec*- . : i :
tively. When the radii of two particles are different, which t;dl]flp /tVt \t/)vhereup is the velocity of a particle. Re-0.13 in
areR, andR, separately, this formula can be extended to the € flat tube.
form [42]

A. Motion of a single circular particle in a channel

3 1 2R,R 1 2R,R with the stenosis throatb=1.74
FIUb=——7717— abJoah (UN—UN) (20
N 2" "sR;tR, Vs R +R, "2 P If the initial position of a particle falls on the centerline of

the channel, the particle always stays on the centerline and
Ladd [40] suggested that 4/in Eq. (20) is replaced with the velocity at stenosis throat is much larger than that in the
1/s—1/A., A is the cutoff for the added lubrication force; flat tube as shown in Fig. 4. The case is more complex when
for gapss larger thanA, the lattice Boltzmann model cap- the particle is positioned away from the centerline initially.
tures the full hydrodynamic interactions between the parThe snapshots of the positions and orientations of the particle
ticles, andF',Q‘b:O. A.=1 in the present simulation. are displayed in Fig. 5 for the initial position of the particle
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FIG. 4. Thex component of the velocity of a particle passing
through a channel with stenosis with respect to the tirend
x value of the trajectoryinse). The initial position falls on the
centerline.

FIG. 6. The velocity and angular velocity of the particle shown
in Fig. 5 with respect to the time and x value of the trajectory
(insed.

) ) B. Motion of two circular cylinders in a channel
2d above the centerline. Near the protuberance the particle with b=1.75

moves to the centerline of the tube. However, the particle

never arrives at the centerline. After passing the stenosis, the rliilglure 8n?rI:p':filySt t?ﬁ trajr?tCtrcl)irrlneSin?tfi tnvoTpAaRavr Ic:lrcitL:Iar
particle migrates to the same direction of the initial position,pa cles symmetric to the centerting initiatly. Their velocities

i.e., the particle migrates up since the initial position of theand angular velocities are shown in Fig. 9. Beomponents
€., e p 9 P . b . of the velocities for both particles are consistent and merge
particle is above the centerline. This is consistent with th

‘ § . Since the width at th is throat is onlyd..7
SegreSilberberg effec{7] observed in flat pipe flow that nto one. Since the width at the stenosis throat is onlyd..75

I i ! | I ¢ hand the particles are undeformable, it is impossible for two
neutrally buoyant cylinders migrate laterally away from both ey jar particles to pass the throat simultaneously. The par-

the wall and the centerline and reach a certain lateral equijcies stop near the throat and all the velocities and angular
librium position. Figure 6 shows the velocity and angularye|gcities vanish. It should be noted that there is a crucial
velocity of the particle with respect tbandx. Thex com-  gjfference between the two-dimensional circular particles
ponent of the velocity at stenosis throat is about five times ofnd three-dimensional spheres passing a stenosis channel. In
that in the flat tube. Thg component of the velocity changes the two-dimensional case, not only both the particles are at
its direction from upstream to downstream of the stenosisrest, but the velocities at all fluid nodes vanish after the
The angular velocity at the throat is not so smooth as that ofhroat is completely blocked by particles. However, there is
the x or y component of the velocity. This results from that space for the fluid to flow even if the particles are blocked by
the particle sometimes touches the upper protuberance neidye stenosis throat in three dimensions. The phenomena are
the stenosis throat like a skier. When the particle touches thmore interesting when two planar circular particles are posi-
upper protuberance, there is friction on the surface betweetioned asymmetric to the centerline initially. Figure (40

the upper protuberance and the particle. Although the frictiorflisplays the snapshots. Initially the upper particle is posi-
is very small, it gives a relatively large torque since it acts onfioned 2+s above the centerline and the lower particle is
the surface of the particle and is perpendicular to the conned2ositioned 21 below the centerline, where=d/4000. Un-

tion line between the contact point and the center of thdike that shown in Fig. 8, the particles will not block the
particle. Figure 7 shows the streamline in the tube. throat completely due to the very small asymmetry. The par-

34

17¢

x(m) ' x(um)

y(um)
@

y(um)

FIG. 5. The snapshots of the positions and orientations of a FIG. 7. The streamline together with the circular particle in the
particle with the initial position @ above the centerline. stenosis tube.
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- . -34 . .
-68 -34 0 34 68
-34 P | 1
-68 -34 (] 34 x(um)
x(p.m) 4.4 T T v T T
FIG. 8. The snapshots of the positions of two circular particles t a3k i
with the initial position symmetric to the centerline with % ’
=1.74d. ()
4.2 1 1 " 1 " 1
. . 9.5 9.4 9.3 9.2 9.1 9.0
ticles move almost symmetrically for the snapshots num- Xum)
pum

bered 1 to 9. From the snapshot marked 9, the asymmetry

amplifies. The lower particle still moves forward while the

upper particle will stop and then move back, leaving space to FIG. 10. The snapshots and the trajectories of two circular par-
let the lower particle pass the throat as the kink shown in thdicles with the initial position asymmetric to the centerline with

enlarged part of the trajectory displayed in Fig(l)0Once

asymmetryd/4000 andb=1.75d. The time interval between the

the space is enough to let the lower particle pass the stenogigapshots is 0.001 06 s. The enlarged part of the trajectory of the
throat, the upper particle changes its moving direction agaityPPer particle shows that the particle moves back first, leaving
and follows the lower particle. In Fig. 11 we show the SPace to let the lower particle passing the throat first.

streamline when the upper particle begins to move back. It is

clear that both particles rotate.

—LO—v_of the upper particle
[ —— v, of the upper particle
—8—y_of the lower particle
- —A— v, of the lower particle

C. Motion of two circular cylinders in a channel
with b#1.74d

Figure 12 displays the snapshots of two circular cylinders

in a channel withb=1.5d. Initially the upper particle is po-
sitioned 21+ s above the centerline and the lower particle is
positioned 21 below the centerline, where=d/4000. Un-

T like that for b=1.75d, both particles move upward down-

wicm/s)

alrad/s)

-1

0.000
i(s)
a00fF ~ " T L A
3000 [ —0—wofthe upper particle (b)-.
2000 [ —8— wof the lower particle 7
1000 |- -
oE

-1000 [~4000 F -
-2000 F0F .
- 2000 F i
[00Ff W ]
-4000 |- 00035 o.cl:ose 0.0037 oiooss 0.0039 '0.0040 .

0.001 0.002

0.003

0.004

0.000 0.001

0.002
f(s)

FIG. 9. The time-dependent velocitg) and angular velocityb)

0.003

0.004

stream of the stenosis, suggesting an evidence of attractive
forces between two particles after the two particles pass the
stenosis throat. Grieet al. [43] studied the influence of a
glass wall on the interaction between small charged polysty-
rene particles of 0.652xzm and found some long distance
attractive interaction between the particles 3un apart
when they were close to the wal-2.5 um) while there was
only a repulsive force when they were away from the wall
(~9.5 um). In our simulation, there are no charges on the
particles and the diameter is 8&n. In Fig. 13 we show the

-60 -40 -20 0 20 40 60

FIG. 11. The streamline together with the circular particles

of the particle shown in Fig. 8. The inset is part of the enlargedproximal to the stenosis throat. The streamline shows that both par-

figure.

ticles rotate.
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34

17

Y(um)
y(m)

68

x(um)
X(wm)

FIG. 14. The snapshots of two circular particles positioned ini-

FIG. 12. The snapshots and the trajectories of two circular parEIalIIy asymmetrically withs =d/40.

ticles with the initial position asymmetric to the centerline with

asymmetryd/4000 andb=1.5d. The time interval between the Dco @andb. can also be found in the figure at whioh~0.

snapshots is 0.000 046 s. The enlarged part of the trajectory of thdumerically we cannot distinguish whethey=0 occurs ex-

upper particle. actly atb=b.y or b, due to the interaction of two particles
through fluid.

fringe-to-fringe distances between the two particles, the up- "€ suggested attractive force between two particles
per particle and the upper protuberance, and the lower paffoundb=1.5d may be particular to two-dimensional sys-
ticle and the lower protuberance. The fringe-to-fringe dis-€Ms. We have performed numerical simulations on a quasi-
tance between the lower particle and the lower protuberanci/o-dimensional systerf4]. Explicitly, the numerical simu-
has a minimal value at= — 10 and increased gradually. The Ia}tlons are per_formed in thr_ee dlmenspns. Thg particles are
distance is larger than Lm at x=13 um. However, the disks 0.171 thick in z direction, whered is the diameter of

distance between two particles stays very small fram the disks. The length of the channelardirection is 0.286
= —12 to 25um. Fromx=10 to 25 um the distance be- and periodic boundary condition is applied andirection.
tween the upper particle and the upper protuberance is also
very small. If the asymmetry initially is sufficiently large, 4.8
the attractive forces between two particles are weak enough [
that the lower particle moves downwards after passing the 4.0
stenosis, as displayed in Fig. 14 for d/40. 3.2 [
Numerical simulations show that there are two critical )

valuesb.y andb. . Both particles move upward downstream @ 2.4
for b,o<b=b, while the lower particle moves downward for § :
d<b<bg or b>b,. It is found thatb.~1.26d and b, <= 1.6
~1.65d numerically. To further understand the behavior of i
the particles, the velocities of both particles for differbrat 0.8
x=15 um downstream are shown in Fig. 15. The values of [

—0O— upper particle]
—A— |ower particle

0.0 PR U N S N
1.0 1.2 14 16 1.8 20

40 T T T T
== Gap Letween thet\,vo particles ' (a) b/d
L =O==Gap between the upper particle :
and the upper protuberance 2.4
30 |- == Gap between the lower particle - . L
and the lower protuberance —{— upper partlcle
’é‘ 1.6 —A— lower particle
= 20 :
o
3] m 0.8
O € -
10 s 00
N -
6 0.8
-40 1ol ..,
10 1.2 14 16 1.8 2.0
X(um)
(b) b/d

FIG. 13. The fringe-to-fringe distances between the two par-
ticles, the upper particle and the upper protuberance, and the lower FIG. 15. The velocities of both particles for differebtat x
particle with the lower protuberance for=d/4000. =15 um downstream.
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—— Random distribution
0.4 }—0— Simulation results

y(um)

FIG. 16. A snapshot of many circular particles in a stenosis tube
together with the streamline.

The two-dimensional projection of the quasi-two-
dimensional system is the same as the two-dimensional sys-
tem described in the present paper. The attractive interactions
between the particles as observed in Fig. 12 almost disap-
pear. The lower particle is always below the centerline.

In two-dimensional models, as the fluid flow is much
more confined, interaction is significantly enhanced between
particles when they depart from each other, giving rise to the
observable phenomenon as shown in Fig. 12. In three- =Y
dimensional cases, fluid can flow from tkedirection into
the space between particles, leading to a much weéker
any) attractive interaction between the particles. As a result,
the lower particle always goes below center line, instead of 02 .,
following the upper one. 136 -68 0 68 136

X(um)

D. Motion of more circular particles in a channel with stenosis

Figure 16 shows a typical snapshot together with the FIG. 17. ® characterizing the distribution of the particles in the
streamline forb=1.5d. The hematocrit of the injected fluid tube for(@ b=1.5d and (b) b=1.75. The irregular peaks result
is 0.2 and the particles from the inlet are positioned ran_]tlrom tge pa(;tlcklles staylt?g almost at rest at the corners between the
domly alongy direction. The average velocity of the particles 1@t tUbe and the protuberances.
in the flat twbe is 0.95 cmis, wh|ch correspo_nds to the Reybn the hematocrit distribution of the particles in the flat
nolds number 0.08. Ample experimental evidence suggestt%beS Numerically we find thab.-~b. and b.~b
that hematocrit distribution in the microvaculature is not uni- his Behavior ic alio consistent V\jﬁ’ﬁ theC%bservactTon tﬁ;’ﬂ red
form: Red blood cells tend to concentrate near the center QE

the vesse]1l]. The heterogeneous distribution of the partidesv:eososdel?r?lmllsatti?t?eéf] ngt%etgt;a\i\ll?::gﬂghfircsﬂtf ”Sg]Zn%f the
in stenosis vessels is more complex. We define a quadtity : L

. ; I b=1.75 at the stenosis throat are greater than that of a
atxto characterize this behavior: random distribution as shown in the solid line in Fig. 17,
& indicating a tendency of particle gathering near the wall. The
P(x)= < Eo—r 0-5> , (21)  peaks ak~ =+ 35 um result from the particles staying almost
= at rest at the corners between the flat tube and the protuber-

) . . ances.
whereE (x) is half of the width of space of the tubesaté is

the distance between the center of any particlg ahd the
centerline, and is the radius of the particles. In flat tubes,
®=0 if the particles are uniformly distributed in the tube as We have applied the lattice Boltzmann method to the
the solid line shown in Fig. 17, whilé=-0.5 and®=0.5 study of particle suspensions through a modeled arterial
correspond, respectively, to the cases that all particles fall oatenosis. The stenosis not only increases the velocities of
the centerline and touch the boundaries. In the flat tubefjuid and particles at the stenosis throat, but also the particles
$<0 implies that the particles tend to concentrate near thenay be blocked temporally when the width of the stenosis
centerline of the vessel, anéi>0 corresponds to that the throatb is larger thand and smaller than @ whered is the
particles incline to gather close to the vessel walls. The simueiameter of the particles. However, for rigid particles, only
lation results are shown in Fig. 17. It is found tkkt-0 for ~ when the particles are positioned symmetrically to a very
b=1.5d and ®<0 for b=1.75 in the flat tube far away high accuracy can the symmetric stenosis be blocked com-
from the stenosis. Similar to that discussed in Sec. IV B omletely. A very small asymmetry will be amplified proximal
the behavior of two particles downstream, there are two critito the stenosis throat in that one of the particles will go back
cal valueb.4q andb.g . >0 whenb 4o<b<b.s and vice to leave space to let the other particles pass the throat, im-
versa in the flat tube far away from the stenosis, implyingplying that the stenosis throat cannot be completely blocked
that the width of the stenosis throat has significant influencdy particles in a real system. This is quite different from the

V. CONCLUSION AND DISCUSSION
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jamming phenomena of granular flow in a hopgds]. and those at all fluid nodes vanish when the throat is com-
Moreover, an evidence of attractive interactions between theletely blocked by particles. There is space for the fluid to

particles as well as a particle and the proximal protuberancflow even if the particles are blocked by the stenosis throat in
is observed when the asymmetry is very small and the widtlhree dimensions. The simulations on the particle suspen-
at the stenosis throat is between two critical values. Thisions in three-dimensional symmetric stenotic arteries with

force is weak for large asymmetry. When multiparticle sus-he lattice Boltzmann method are undertaken with a PC clus-
pensions with a hematocrit 0.2 are injected from the inlet, weer, which will be presented elsewhere.

find that there are two critical valuésgo andb.g . Particles
tend to gather near the centerline in the flat tube far away
from the stenosis wheb<<b.4q 0or b>b.q and vice versa. ACKNOWLEDGMENTS
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