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The technique of lattice Boltzmann simulation has been applied to the study of two-dimensional particle
suspensions through a modeled arterial stenosis. The stenosis model consists of two-side symmetric semicir-
culars in a planar channel with the width of the stenosis throat larger thand and less than 2d, whered is the
diameter of the particles. When only one particle is positioned off-centerline initially, the particle migrates
off-centerline after passing the stenosis and the velocity at the stenosis throat is much larger than that in a flat
tube. Only when two particles are positioned symmetrically to the centerline to a very high accuracy can the
flow be blocked by two particles completely. A very small asymmetry will be amplified proximal to the
stenosis throat in that one of the particles goes back to leave space to let the other particle passing the stenosis
first so that the particles cannot be blocked. An evidence of attractive interactions between the particles as well
as a particle and a proximal protuberance is observed when the asymmetry is very small and the width at the
stenosis throat is between two critical values. The hematocrit distribution of the particles is studied by simu-
lating multiparticle suspensions. It is found that the width of the stenosis throat has a significant influence on
the hematocrit distribution of the particles in the flat tubes far from the stenosis.
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I. INTRODUCTION

The flow and particle suspensions through stenosis
sels are of great interest in medical science@1–6#. Narrowing
of blood flow, or stenosis, may cause a severe reductio
blood flow and red blood cell transportation. This reducti
poses grave health risks and is a major cause of mortality
morbidity in the industrialized world. There are numero
papers on the study of the pulsatile flow in a mildly or s
verely stenotic artery. For example, Mittalet al. applied a
large-eddy simulation to study pulsatile flow in a model
stenosis@3#. The inclusion of particle suspensions in steno
arteries adds complexity for theoretical and experimen
analyses. The fluid dynamics of the flow and the moving
the particles are inextricably intertwined and both need to
understood. On the other hand, the solid-liquid suspens
in flat pipe flow have attracted much attention, both expe
mentally and numerically, in the past few decades. Early
1961, Segre´ and Silberberg discovered experimentally th
neutrally buoyant cylinders migrated laterally away bo
from the wall and the centerline and reached a certain lat
equilibrium position in pipe flow@7#. Fahraeus found that th
hematocrit, the ratio of red blood cells to the total volume
a blood sample, in the small tube was smaller than that in
vessel@8#. Numerical simulations on particle suspensions
fluid flow are quite difficult and intensive due to the com
plexity of incorporating the hydrodynamic dynamics for li
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uid flow and the Newtonian dynamics for the particle mo
ing through the solid-liquid interface. Fenget al. @9# used the
infinite-element method to investigate the motion of a circ
lar particle in a Couette and Poiseuille flow. Miglioriniet al.
@10# used a lattice Boltzmann approach to quantify the for
exerted on rolling leukocytes by red blood cells in ‘‘virtu
blood vessels.’’ Feng and Weinbaum@11# presented an axi-
symmetric model in which they treated the red blood c
surface as rigid but considered explicitly the build up in h
drodynamic pressure in the glycocalyx associated with
namic compression of the layer. Daset al. @1# used a struc-
tural parameterk to characterize the average number of r
blood cells in an aggregate to describe the hematocrit di
bution while avoiding to simulate the moving of each r
blood cell. This paper will concentrate on the particl
moving through small stenosis tubes. We will use the latt
Boltzmann method@12–14#.

The lattice Boltzmann method has been proved to be
of the most promising tools in the simulation of the soli
fluid two-phase flow. Based on the discrete Boltzmann eq
tion @15# and inheriting the advantage of local nature of t
computation, the lattice Boltzmann method has been pro
to achieve second-order accuracy in the domain of the fl
both theoretically and numerically@16#. Ladd @17# was the
first to apply the lattice Boltzmann method to analyze a so
particle in a fluid. He proposed a modified bounce-back r
and a scheme to evaluate the hydrodynamic force exerte
the solid particles. Aidumet al. @18# attempted to improve
Ladd’s model by removing the fluid within the solid regio
so that they could handle a solid with density less than t
of the fluid. Qi@19# applied the model to simulate the ellips
in nonzero Reynolds number flow. Behrend@20# analyzed
d-
©2004 The American Physical Society19-1
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the different boundary conditions based on the bounce-b
rule and proposed a related bounce-back at the no
Raiskinmaket al. @21# applied the method to simulate non
spherical particles suspended in a shear flow. Both Lad
and Aidum’s models assumed a physical boundary locate
the middle of the link between a solid node and a fluid no
The exact location of the physical boundary for the Behre
model is more difficult to determine. Consequently, the h
drodynamic radius of a suspended particle differs from
input radius for those three models@21#. Noble and Torczyn-
ski proposed a lattice Boltzmann model to study the sys
with complex and moving geometries in which compu
tional cells were partially filled with fluid@22#. Inamuro
et al. @23# studied the neutrally buoyant circular cylinde
in the flow between parallel walls. The force and torque w
calculated by integrating stress tensor and momentum
on a closed surface for a fixed radial distance 0.16D from
the surface of the cylinder. Recently, Fanget al. @24,25# ap-
plied the lattice Boltzmann method to study the fluid flow
distensible blood vessels. Hoekstraet al. extended the
method to harmonic flows. Within the range of Womersl
numbers tested, the agreement between the simulations
the theory is good@26#. Hirabayashiet al. have performed
lattice Boltzmann simulations for blood flow in a vessel d
formed by the presence of an aneurysm@27#.

Recently, we proposed a new lattice Boltzmann metho
simulate two-dimensional moving particles in a Newtoni
fluid @28#. Briefly, the boundary condition proposed by F
ippova and Hanel@29,30# for the stationary complex geom
etry was incorporated with the Newtonian dynamics. T
accuracy and robustness of this technique have been de
strated by simulating sedimentation of a circular cylinder i
two-dimensional channel and comparing the simulation
sults with those obtained from a second-order finite-elem
method@28#. The method was successfully applied to stu
the sedimentation of a single charged circular cylinder i
two-dimensional channel in a Newtonian fluid@31#. In this
paper, we will extend the method to simulate tw
dimensional particle suspensions in symmetric stenotic a
ies. The simulation shows that the stenosis not only increa
the velocities of fluid and particles at the stenosis throat,
the particles may be blocked temporally when the width
the stenosis throat is smaller than two times the diamete
the particles. However, for rigid particles, only when the p
ticles are positioned symmetrically to a very high accura
can the symmetric stenosis be blocked completely. A li
asymmetry will be amplified proximal to the stenosis thro
in that one of the particles will go back to leave space to
the other particle pass the throat, implying that the sten
throat cannot block the particles completed in a real syst
Unexpected attractive interactions between the particle
well as a particle and a proximal protuberance are obse
when the asymmetry is very small and the width at the ste
sis throat is between two critical values. The hematocrit d
tribution of the particles is studied by simulating multipa
ticle suspensions.

The paper is organized as follows. In Sec. II we brie
describe the lattice Boltzmann method. Section III is devo
to a brief review of the boundary condition and hydrod
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namics force exerted on the moving particles we used
the present paper. In Sec. IV, we present our simulation
sults. And finally, conclusion and discussion are presen
in Sec. V.

II. THE LATTICE BOLTZMANN MODEL

The Boltzmann equation with the single relaxation tim
approximation reads@32#

] f

]t
1z•“ f 52

1

l
@ f 2 f (eq)#, ~1!

wherez is the particle velocity,f (eq) is the equilibrium dis-
tribution function, andl is the relaxation time.

Discretizing Eq.~1! in the velocity spacez by using a
finite set of velocitiesei , we obtain@33,34#

] f i

]t
1ei•“ f i52

1

l
@ f i2 f i

(eq)#. ~2!

In the model on a square lattice in two dimensions,e0
5(0,0), ei5„cosp(i21)/2,sinp(i21)/2…, i 51,2,3,4, andei
5„cosp(2i21)/4,sinp(2i21)/4…, for i 55,6,7,8 are the nine
possible velocity vectors as shown in Fig. 1, and the equi
rium distribution functions are of the form@33#

f i
eq5a irF11

3

c2 ei•u1
9

2c4
~ei•u!22

3

2c2
u2G , ~3!

for athermal fluids. In the equation,a054/9, a15a25a3
5a451/9, and a55a65a75a851/36, c5dx/dt is the
lattice speed, anddx anddt are the lattice constant and th
time step, respectively. The densityr and the velocityu are
defined by

r5(
i

f i ,

u5(
i

f iei /r. ~4!

FIG. 1. Basic cell for the two-dimensional ‘‘nine-speed’’ lattic
Boltzmann model.
9-2
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The lattice Boltzmann equation@13,14# is obtained by fur-
ther discretizing Eq.~2! in spacex and timet as

f i~x1dxei ,t1dt !2 f i~x,t !52
1

t
~ f i2 f i

eq!, ~5!

wheret5l/dt. The macroscopic equations can be obtain
by a Chapman-Enskog procedure. The viscosity in the m
roscopic equations is

n5
~2t21!

6
c2dt. ~6!

In this paper, we setdx5dt5c51.

III. BOUNDARY CONDITION
FOR COMPLEX GEOMETRY

Filippova and Hanel@29# have presented their scheme f
treating the boundary condition by considering a curv
boundary lying between the lattice node of spaceDdx as
shown in Fig. 2. The lattice nodes on the solid and fluid si
are denoted byxb andxf , respectively. We assume

ei5xb2xf

and

eī 52ei .

The filled small circle, marked by a letterw, at xw is the
intersection with the physical boundary on the link betwe
xb andxf . The fraction of an intersected link in the fluid i

D5
uxf2xwu
uxf2xbu

, 0<D<1. ~7!

In the streaming stepf ī (xf) is expected to be obtained by

f ī ~xf ,t1dt !5 f ī ~xb ,t !. ~8!

FIG. 2. Layout of the regularly spaced lattices and curved w
boundary.
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However, the distribution functionf ī (xb ,t) at the boundary
nodeb is unknown.

Fillipova and Hanel assumed the linear interpolation@29#

f ī ~xb ,t !5~12x! f i~xf ,t !1x f i
(* )~xb ,t !16a ieī •uw , ~9!

whereuw5u(xw ,t) is the velocity atxw andx is a parameter.
f i

(* ) is a fictitious equilibrium distribution function given b

f i
(* )~xb ,t !5a ir@113ei•ub f1

9
2 ~ei•uf !

22 3
2 uf

2#, ~10!

where uf5u(xf ,t) is the fluid velocity at the fluid nodef
shown in Fig. 2,ub f is to be determined. Fillipova and Hane
proposed@29#

ub f5~D21!uf /D1uw /D and x5~2D21!/t

for D> 1
2 ~11!

and

ub f5uf andx5~2D21!/~t21! for D< 1
2 , ~12!

to obtain a second-order scheme for the ‘‘slow flow.’’ M
et al. @30# improved the stability of the scheme att'1 by
replacing Eq.~12! by

ub f5uf f andx5~2D21!/~t22! for D< 1
2 . ~13!

They have used the improved technique to test against
eral flow problems such as the two-dimensional chan
flows with constant and oscillating pressure gradients, flo
due to an impulsively started wall, lid-driven square cav
flows, and flows over a column of circular cylinders to dem
onstrate its accuracy and robustness@30#.

For eachrelevant direction ei from a fluid node to a
boundary node, the solid boundary obtained an amoun
momentumf i(xf ,t1)ei2 f ī (xb ,t)eī where the first term is
due to a fraction of particlesf i(xf ,t1) colliding on the
boundary and the second term comes from a fraction of p
ticles f ī (xb ,t) bouncing back from the boundary in a tim
step. Consequently, the hydrodynamic force exerted on
solid particle at timet along this direction is

F~xb!5@ f i~xf ,t1!1 f ī ~xb ,t !#ei , ~14!

wheret1 is the postcollision time, andf ī (xb ,t) is obtained
from Eq. ~9!. The particle forceFT and torqueTT acting on
the solid particle are obtained as

FT5( F~xb! ~15!

and

TT5( ~xb2R!3F~xb!, ~16!

where R is the center of mass of the solid particle. Th
summation runs over all the relevant directions of the bou
ary nodes.

ll
9-3
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The translation of the center of mass of each particle
updated at each Newtonian dynamics time step by usin
so-called half-step ‘‘leap-frog’’ scheme@37–39#. The scheme
is written as

V~ t1 1
2 dt !5V~ t2 1

2 dt !1dtFT~ t !/M , ~17!

R~ t1dt !5R~ t !1dtV~ t2 1
2 dt !1dt2FT~ t !/M , ~18!

whereV is the velocity of the center of mass of the so
particle, andM is the mass of the solid particle. The rotatio
of the particles are updated in a similar way.

Due to the moving of the particles, some fluid nodes c
be covered by the moving solid particles, the fluids at th
nodes will be removed from the system. On the other ha
when a fluid node previously occupied by a solid particle
recovered, the fluid density at this newly created node
assumed to be the average of the extrapolated values fro
second-order extrapolation schemeof all the possible direc-
tions @28,35#. In Ref. @25# we have shown that the mass
conserved approximately at boundaries.

It is clear that both the boundary condition for the co
plex geometry and the Newtonian dynamics for the mov
particles achieve second-order accuracy. The accuracy o
lattice Boltzmann scheme has been demonstrated by sim
ing the sedimentation of a cylinder circular in a vertical tu
and comparing the simulation results with those obtain
from a second-order finite-element scheme@28#. The method
has been successfully applied to the study of the sedime
tion of a single charged circular cylinder in a two
dimensional channel in a Newtonian fluid@31#.

When there are more than one particle in a tube, the
tice Boltzmann method breaks down when particles
closer than some critical separations. Introduction of a lu
cation force is one of the solutions to solve this proble
@40,41#. Lubrication forces are significant only when in clo
proximity. In this paper, only the normal lubrication force
between two particlesFN

lub are added. Yuan and Ball@41#
proposed the lubrication forces between two circular p
ticles with same radius as

FN
lub52

3

2
ph

R

s
AR

s
~va

N2vb
N!, ~19!

wheres is the fringe-to-fringe gap,va
N andvb

N are the veloci-
ties along the normal direction of the two particles, resp
tively. When the radii of two particles are different, whic
areRa andRb separately, this formula can be extended to
form @42#

FN
lub52

3

2
ph

1

s

2RaRb

Ra1Rb
A1

s

2RaRb

Ra1Rb
~va

N2vb
N!. ~20!

Ladd @40# suggested that 1/s in Eq. ~20! is replaced with
1/s21/Dc , Dc is the cutoff for the added lubrication force
for gapss larger thanDc the lattice Boltzmann model cap
tures the full hydrodynamic interactions between the p
ticles, andFN

lub50. Dc51 in the present simulation.
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IV. SIMULATION AND RESULTS

The system is a two-dimensional rigid planar channel
length L and width w as shown in Fig. 3.w58d and L
532d, whered58.5 mm is the diameter of the circular par
ticle suspensions, which approximately equals the diam
of human red blood cells. The stenosis is created by add
two symmetric protuberances inside the vessel. The up
~lower! protuberance is a semicircle, centered atx50 on the
upper~lower! boundary with radius determined by the wid
of the stenosis throatb. In this paperd,b,2d. The densi-
ties of both fluid and particles are 1 g/cm3 and the kinematic
viscosity of the fluid flow isn50.01 cm2/s, corresponding
to the water at 20 °C. The pressure difference between
inlet and outlet isDp5541 Pa, comparable to that in th
arteriole of the cat mesentery~see Table 5.5:2 of Ref.@6#!. A
pressure boundary condition, proposed by Zou and He@36#,
is applied at the inlet and outlet. Initially the distributio
functions at all the fluid nodes are set to be the equilibri
distribution functions with zero velocity except for those
inlet or outlet. The particles are positioned 8d left to the
stenosis throat, keeping motionless at their initial positions
the first 5000 time steps. Fromt55000 time steps the par
ticles are free to move according to the hydrodynamic for
and torques acting on them. In the simulation,t50.75. The
radius of the particles is 7.001 lattice units which is lar
enough to obtain accurate results@28#. Consequently, each
lattice unit corresponds to 8.5mm/7.001/250.607mm. The
typical velocity of the particles,ut , in the flat tube is about
1.5 cm/s, comparable to the velocity of the red blood cells
a cat artery with a diameter 56mm ~see, Fig. 5.3:1 of Ref.
@6#!. The particle Reynolds number is defined by Rp
5dup /n, whereup is the velocity of a particle. Rep'0.13 in
the flat tube.

A. Motion of a single circular particle in a channel
with the stenosis throatbÄ1.75d

If the initial position of a particle falls on the centerline o
the channel, the particle always stays on the centerline
the velocity at stenosis throat is much larger than that in
flat tube as shown in Fig. 4. The case is more complex w
the particle is positioned away from the centerline initial
The snapshots of the positions and orientations of the par
are displayed in Fig. 5 for the initial position of the partic

FIG. 3. Schematic diagram of the planar channel with steno
The lengthL and widthw of the channel are 272mm and 68mm,
respectively.d58.5 mm is the diameter of the circular particle su
pensions. The upper~lower! protuberance is a semicircle, centere
at x50 on the upper~lower! boundary with radius determined b
the width of the stenosis throatb.
9-4
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2d above the centerline. Near the protuberance the par
moves to the centerline of the tube. However, the part
never arrives at the centerline. After passing the stenosis
particle migrates to the same direction of the initial positio
i.e., the particle migrates up since the initial position of t
particle is above the centerline. This is consistent with
Segré-Silberberg effect@7# observed in flat pipe flow tha
neutrally buoyant cylinders migrate laterally away from bo
the wall and the centerline and reach a certain lateral e
librium position. Figure 6 shows the velocity and angu
velocity of the particle with respect tot and x. The x com-
ponent of the velocity at stenosis throat is about five times
that in the flat tube. They component of the velocity change
its direction from upstream to downstream of the steno
The angular velocity at the throat is not so smooth as tha
the x or y component of the velocity. This results from th
the particle sometimes touches the upper protuberance
the stenosis throat like a skier. When the particle touches
upper protuberance, there is friction on the surface betw
the upper protuberance and the particle. Although the frict
is very small, it gives a relatively large torque since it acts
the surface of the particle and is perpendicular to the conn
tion line between the contact point and the center of
particle. Figure 7 shows the streamline in the tube.

FIG. 4. Thex component of the velocity of a particle passin
through a channel with stenosis with respect to the timet and
x value of the trajectory~inset!. The initial position falls on the
centerline.

FIG. 5. The snapshots of the positions and orientations o
particle with the initial position 2d above the centerline.
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B. Motion of two circular cylinders in a channel
with bÄ1.75d

Figure 8 displays the trajectories of two planar circu
particles symmetric to the centerline initially. Their velocitie
and angular velocities are shown in Fig. 9. Thex components
of the velocities for both particles are consistent and me
into one. Since the width at the stenosis throat is only 1.7d
and the particles are undeformable, it is impossible for t
circular particles to pass the throat simultaneously. The p
ticles stop near the throat and all the velocities and ang
velocities vanish. It should be noted that there is a cruc
difference between the two-dimensional circular partic
and three-dimensional spheres passing a stenosis chann
the two-dimensional case, not only both the particles are
rest, but the velocities at all fluid nodes vanish after t
throat is completely blocked by particles. However, there
space for the fluid to flow even if the particles are blocked
the stenosis throat in three dimensions. The phenomena
more interesting when two planar circular particles are po
tioned asymmetric to the centerline initially. Figure 10~a!
displays the snapshots. Initially the upper particle is po
tioned 2d1§ above the centerline and the lower particle
positioned 2d below the centerline, where§5d/4000. Un-
like that shown in Fig. 8, the particles will not block th
throat completely due to the very small asymmetry. The p

a

FIG. 6. The velocity and angular velocity of the particle show
in Fig. 5 with respect to the timet and x value of the trajectory
~inset!.

FIG. 7. The streamline together with the circular particle in t
stenosis tube.
9-5
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ticles move almost symmetrically for the snapshots nu
bered 1 to 9. From the snapshot marked 9, the asymm
amplifies. The lower particle still moves forward while th
upper particle will stop and then move back, leaving spac
let the lower particle pass the throat as the kink shown in
enlarged part of the trajectory displayed in Fig. 10~b!. Once
the space is enough to let the lower particle pass the sten
throat, the upper particle changes its moving direction ag
and follows the lower particle. In Fig. 11 we show th
streamline when the upper particle begins to move back.
clear that both particles rotate.

FIG. 8. The snapshots of the positions of two circular partic
with the initial position symmetric to the centerline withb
51.75d.

FIG. 9. The time-dependent velocity~a! and angular velocity~b!
of the particle shown in Fig. 8. The inset is part of the enlarg
figure.
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C. Motion of two circular cylinders in a channel

with bÅ1.75d

Figure 12 displays the snapshots of two circular cylind
in a channel withb51.5d. Initially the upper particle is po-
sitioned 2d1§ above the centerline and the lower particle
positioned 2d below the centerline, where§5d/4000. Un-
like that for b51.75d, both particles move upward down
stream of the stenosis, suggesting an evidence of attrac
forces between two particles after the two particles pass
stenosis throat. Grieret al. @43# studied the influence of a
glass wall on the interaction between small charged poly
rene particles of 0.652mm and found some long distanc
attractive interaction between the particles 3–5mm apart
when they were close to the wall~;2.5mm! while there was
only a repulsive force when they were away from the w
~;9.5 mm!. In our simulation, there are no charges on t
particles and the diameter is 8.5mm. In Fig. 13 we show the

s

d

FIG. 10. The snapshots and the trajectories of two circular p
ticles with the initial position asymmetric to the centerline wi
asymmetryd/4000 andb51.75d. The time interval between the
snapshots is 0.001 06 s. The enlarged part of the trajectory of
upper particle shows that the particle moves back first, leav
space to let the lower particle passing the throat first.

FIG. 11. The streamline together with the circular partic
proximal to the stenosis throat. The streamline shows that both
ticles rotate.
9-6
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fringe-to-fringe distances between the two particles, the
per particle and the upper protuberance, and the lower
ticle and the lower protuberance. The fringe-to-fringe d
tance between the lower particle and the lower protubera
has a minimal value atx5210 and increased gradually. Th
distance is larger than 1mm at x513 mm. However, the
distance between two particles stays very small fromx
5212 to 25 mm. From x510 to 25 mm the distance be
tween the upper particle and the upper protuberance is
very small. If the asymmetry§ initially is sufficiently large,
the attractive forces between two particles are weak eno
that the lower particle moves downwards after passing
stenosis, as displayed in Fig. 14 for§5d/40.

Numerical simulations show that there are two critic
valuesbc0 andbc . Both particles move upward downstrea
for bc0<b<bc while the lower particle moves downward fo
d,b,bc0 or b.bc . It is found thatbc0'1.26d and bc
'1.65d numerically. To further understand the behavior
the particles, the velocities of both particles for differentb at
x515 mm downstream are shown in Fig. 15. The values

FIG. 12. The snapshots and the trajectories of two circular p
ticles with the initial position asymmetric to the centerline wi
asymmetryd/4000 andb51.5d. The time interval between the
snapshots is 0.000 046 s. The enlarged part of the trajectory o
upper particle.

FIG. 13. The fringe-to-fringe distances between the two p
ticles, the upper particle and the upper protuberance, and the l
particle with the lower protuberance for§5d/4000.
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bc0 andbc can also be found in the figure at whichvy'0.
Numerically we cannot distinguish whethervy50 occurs ex-
actly atb5bc0 or bc due to the interaction of two particle
through fluid.

The suggested attractive force between two partic
aroundb51.5d may be particular to two-dimensional sy
tems. We have performed numerical simulations on a qu
two-dimensional system@44#. Explicitly, the numerical simu-
lations are performed in three dimensions. The particles
disks 0.171d thick in z direction, whered is the diameter of
the disks. The length of the channel inz direction is 0.286d
and periodic boundary condition is applied inz direction.

r-

he

-
er

FIG. 14. The snapshots of two circular particles positioned
tially asymmetrically with§5d/40.

FIG. 15. The velocities of both particles for differentb at x
515 mm downstream.
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The two-dimensional projection of the quasi-tw
dimensional system is the same as the two-dimensional
tem described in the present paper. The attractive interact
between the particles as observed in Fig. 12 almost dis
pear. The lower particle is always below the centerline.

In two-dimensional models, as the fluid flow is muc
more confined, interaction is significantly enhanced betw
particles when they depart from each other, giving rise to
observable phenomenon as shown in Fig. 12. In thr
dimensional cases, fluid can flow from thez direction into
the space between particles, leading to a much weake~if
any! attractive interaction between the particles. As a res
the lower particle always goes below center line, instead
following the upper one.

D. Motion of more circular particles in a channel with stenosis

Figure 16 shows a typical snapshot together with
streamline forb51.5d. The hematocrit of the injected fluid
is 0.2 and the particles from the inlet are positioned r
domly alongy direction. The average velocity of the particle
in the flat tube is 0.95 cm/s, which corresponds to the R
nolds number 0.08. Ample experimental evidence sugg
that hematocrit distribution in the microvaculature is not u
form: Red blood cells tend to concentrate near the cente
the vessel@1#. The heterogeneous distribution of the partic
in stenosis vessels is more complex. We define a quantitF
at x to characterize this behavior:

F~x!5 K j

J~x!2r
20.5L , ~21!

whereJ(x) is half of the width of space of the tube atx, j is
the distance between the center of any particle atx and the
centerline, andr is the radius of the particles. In flat tube
F50 if the particles are uniformly distributed in the tube
the solid line shown in Fig. 17, whileF520.5 andF50.5
correspond, respectively, to the cases that all particles fa
the centerline and touch the boundaries. In the flat tu
F,0 implies that the particles tend to concentrate near
centerline of the vessel, andF.0 corresponds to that th
particles incline to gather close to the vessel walls. The sim
lation results are shown in Fig. 17. It is found thatF.0 for
b51.5d and F,0 for b51.75d in the flat tube far away
from the stenosis. Similar to that discussed in Sec. IV B
the behavior of two particles downstream, there are two c
cal valuebcF0 andbcF . F.0 whenbcF0,b,bcF and vice
versa in the flat tube far away from the stenosis, imply
that the width of the stenosis throat has significant influe

FIG. 16. A snapshot of many circular particles in a stenosis t
together with the streamline.
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on the hematocrit distribution of the particles in the fl
tubes. Numerically we find thatbcF0'bc0 and bcF'bc .
This behavior is also consistent with the observation that
blood cells tend to concentrate near the centerline of
vessel in flat tubes@1#. Both the values ofF for b51.5d and
b51.75d at the stenosis throat are greater than that o
random distribution as shown in the solid line in Fig. 1
indicating a tendency of particle gathering near the wall. T
peaks atx'635 mm result from the particles staying almo
at rest at the corners between the flat tube and the protu
ances.

V. CONCLUSION AND DISCUSSION

We have applied the lattice Boltzmann method to t
study of particle suspensions through a modeled arte
stenosis. The stenosis not only increases the velocitie
fluid and particles at the stenosis throat, but also the parti
may be blocked temporally when the width of the steno
throatb is larger thand and smaller than 2d, whered is the
diameter of the particles. However, for rigid particles, on
when the particles are positioned symmetrically to a v
high accuracy can the symmetric stenosis be blocked c
pletely. A very small asymmetry will be amplified proxima
to the stenosis throat in that one of the particles will go ba
to leave space to let the other particles pass the throat,
plying that the stenosis throat cannot be completely bloc
by particles in a real system. This is quite different from t

e

FIG. 17. F characterizing the distribution of the particles in th
tube for ~a! b51.5d and ~b! b51.75d. The irregular peaks resul
from the particles staying almost at rest at the corners between
flat tube and the protuberances.
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jamming phenomena of granular flow in a hopper@45#.
Moreover, an evidence of attractive interactions between
particles as well as a particle and the proximal protubera
is observed when the asymmetry is very small and the w
at the stenosis throat is between two critical values. T
force is weak for large asymmetry. When multiparticle su
pensions with a hematocrit 0.2 are injected from the inlet,
find that there are two critical valuesbcF0 andbcF . Particles
tend to gather near the centerline in the flat tube far aw
from the stenosis whenb,bcF0 or b.bcF and vice versa.

Although the numerical simulations are performed in tw
dimensions, some similar behavior is expected in three
mensions. It should be noted that there is a crucial differen
In the two-dimensional case, both the velocities of partic
ch

id

n

.

y

tt.
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s

and those at all fluid nodes vanish when the throat is co
pletely blocked by particles. There is space for the fluid
flow even if the particles are blocked by the stenosis throa
three dimensions. The simulations on the particle susp
sions in three-dimensional symmetric stenotic arteries w
the lattice Boltzmann method are undertaken with a PC c
ter, which will be presented elsewhere.
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